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REDUCED BASIS METHOD FOR FINITE VOLUME
APPROXIMATION OF EVOLUTION EQUATIONS ON

PARAMETRIZED GEOMETRIES

MARTIN DROHMANN∗, BERNARD HAASDONK∗, AND MARIO OHLBERGER∗

Abstract. In this paper we discuss parametrized partial differential equations (P2DEs) for
parameters that describe the geometry of the underlying problem. One can think of applications in
control theory and optimization which depend on time-consuming parameter-studies of such problems.
Therefore, we want to reduce the order of complexity of the numerical simulations for such P2DEs.
Reduced Basis (RB) methods are a means to achieve this goal. These methods have gained popularity
over the last few years for model reduction of finite element approximations of elliptic and instationary
parabolic equations.

We present a RB method for parabolic problems with general geometry parameterization and
finite volume (FV) approximations. After a mapping on a reference domain, the parabolic equation
leads to a convection-diffusion-reaction equation with anisotropic diffusion tensor. Suitable FV
schemes with gradient reconstruction allow to discretize such problems. A model reduction of the
resulting numerical scheme can be obtained by an RB technique. We present experimental results,
that demonstrate the applicability of the RB method, in particular the computational acceleration.
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1. Introduction. In this paper, we present a model reduction recipe for the
numerical solution of evolution equations on parametrized geometries. For this purpose
we introduce a parameter µ from a parameter set P ⊂ Rp into the problem equation. In
applications these parameters can characterize certain properties of the physical model
which affect initial and boundary data, the evolution equation or, as our current new
focus, the geometry of the domain. In general, such a parametrized partial differential
equation (P2DE) can be written as

∂tu(t;µ)− L(t;µ)[u(t;µ)] = 0 in Ω(µ)× [0, Tmax] (1.1)

with bounded domains Ω(µ) ⊂ Rd for all µ ∈ P and additional initial and boundary
conditions.

Computational schemes give us solutions {UkH(µ)}Kk=0 of such a P2DE that ap-
proximate u(tk;µ) at time instants 0 = t0 < · · · < tK = Tmax. These approximations
are from a high-dimensional vector space WH(µ) ⊂ L2(Ω(µ)) and their computation
for many different parameters can be very time consuming. The idea applied in this
presentation is therefore to further approximate the snapshots by reduced solutions
{UkN}Kk=0 from a low dimensional reduced basis space WN ⊂ WH . The construction of
a reduced basis space is time expensive by itself, but it allows fast computations of the
reduced solutions afterwards. Reduced Basis (RB) methods have gained popularity in
the last few years. They have successfully been applied on finite element (FE) schemes
for elliptic and parabolic problems. A general overview of these methods can be found
in [8]. Recently, we presented RB methods for two kind of finite volume (FV) schemes:
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first to those that have an affine parameter dependence [6] and second for evolution
equations with an explicit discretization but general parameter dependence [7].

In this presentation, we want to focus on the geometric parametrization which is
a new field for RB methods applied to FV discretizations. In [10] the applicability
of an RB method for a FE discretization of flow problems on parametrized geome-
tries is already demonstrated, but this approach assumes the solution to be globally
continuous and is therefore not applicable in the FV context. In our approach, the
evolution equation is transformed onto a reference domain and the non-affine reference
transformation hereby introduces new terms that depend in a non-affine way on the
parameter. Therefore, the discretization operator needs to be approximated by a
so-called empirical interpolation [1]. The current presentation is based on the thesis
[3] which contains more details on the present study.

The structure of the paper is as follows. Section 2 presents the parametrized
diffusion equation, its reformulation on a reference domain, the FV discretization and
the reduced basis method. Section 3 gives experimental results which demonstrate the
applicability of the model reduction technique. We conclude and give some perspectives
in Sec. 4.

2. Reduced Basis Method for the Parametrized Heat Equation. We
focus on a two dimensional instationary heat equation as a model problem. We present
its reformulation on a reference domain, which results in a convection-diffusion-reaction
equation with (in general) anisotropic diffusion tensor. This can be discretized with
finite volume schemes using suitable gradient reconstruction techniques. Subsequently,
this finite volume scheme can be treated by a RB method after a so called empirical
interpolation of the finite volume space operator.

2.1. Geometry Transformation. For every µ ∈ P we want to determine a solu-
tion u(x, t;µ) on a polygonal domain Ω(µ) ⊂ R2 for all times t ∈ T := [0, Tmax], Tmax >
0, which satisfies the equations

∂tu(x, t;µ)− a(µ)∆u(x, t;µ) = 0 in Ω(µ)×T

u(x, t;µ) = uD(x, t;µ) on ΩD(µ)×T

∇u(x, t;µ) · n = 0 on ΩN (µ)×T

u(x, 0;µ) = u0(x;µ) in Ω(µ).

(2.1)

In these equations the functions u0 and uD represent initial data and Dirichlet
boundary conditions.

We select an arbitrary parameter µ̂ ∈ P that defines the reference domain Ω̂ :=
Ω(µ̂). It will be assumed that for every domain Ω(µ), there exists a diffeomorph map
Φ(µ) : Ω̂ → Ω(µ). The heat equation given in (2.1) can then, for every µ ∈ P, be
transformed onto the reference domain Ω̂.

Lemma 2.1 (Geometry transformation). Let u be a solution of (2.1). Then the
function û(x̂, t) := u(Φ(x̂), t;µ), with coordinates x̂ := Φ−1(x) on the reference domain,
is a solution of the equivalent convection–diffusion–reaction equation

∂tû− a(µ)∇x̂ · (GGt∇x̂û) + a(µ)∇x̂ · (vû)− a(µ)(∇x̂ · v)û = 0 in Ω̂×T. (2.2)
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Here, we used the abbreviations

ṽ(x̂) :=
(
∂x̂1G11(x̂) ∂x̂1G12(x̂)
∂x̂2G21(x̂) ∂x̂2G22(x̂)

)(
1
1

)
(2.3)

v(x̂) := G(x̂)ṽ(x̂), (2.4)

with G(x̂) =
(
Gij(x̂)

)
i,j=1,2

being the Jacobi matrix of the inverse geometry transfor-
mation

G(x̂) := DΦ−1|Φ(x̂). (2.5)

Proof. The transformation affects only the space dependent part of the equation,
such that we can concentrate on the diffusion term. Repeated use of the chain rule
yields

a(µ)∇x · (∇xu) = a(µ)∇x · (Gt∇x̂û)

= a(µ)(Gt∇x̂) · (Gt∇x̂û).
(2.6)

In order to bring this differential equation into the form of a convection–diffusion–
reaction equation we rewrite the diffusion term of (2.2) using the notation Gi· for the
i-th row of G

a(µ)∇x̂ · (GGt∇x̂û) = a(µ)
2∑
i=1

∂x̂i
(Gi· ·Gt∇x̂û)

= a(µ)
2∑
i=1

(∂x̂i
Gi·) ·Gt∇x̂û+ a(µ)

2∑
i=1

Gi· · ∂x̂i
(Gt∇x̂û)

= a(µ)
(
∂x̂1G11(x̂) ∂x̂1G12(x̂)
∂x̂2G21(x̂) ∂x̂2G22(x̂)

)(
1
1

)
·Gt∇x̂û

+ a(µ)(Gt∇x̂) · (Gt∇x̂û)︸ ︷︷ ︸
=RHS of (2.6)

.

(2.7)

If we now insert (2.7) into (2.6), we end up with the stated result

a(µ)∇x · ∇xu = a(µ)∇x̂ · (GGt∇x̂û)− a(µ)ṽ ·Gt∇x̂û
= a(µ)∇x̂ · (GGt∇x̂û)− a(µ)Gṽ · ∇x̂û
= a(µ)∇x̂ · (GGt∇x̂û)− a(µ)∇x̂ · (vû) + a(µ)(∇x̂ · v)û.

(2.8)

Note in particular, that we get a pure diffusion equation, if the transformation map
Φ(µ) is an affine mapping, that is, it can be written in the form Φ(x;µ) = A(µ)x+ b(µ)
with a map A that is linear in x and a vector b(µ). Then the second derivative vanishes
and as a consequence v equals zero and so do the convection and the reaction terms in
equation (2.2). Other RB approaches for problems with a geometry parametrization
that are based on FEM discretization therefore use decompositions of the domain with
piecewise affine mappings [9]. We remark, that the concept cannot be easily transferred
to Finite Volume schemes, as the consistency of the numerical fluxes introduces a
coupling between the subdomains.
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2.2. Finite Volume Discretization. The numerical scheme which we now
choose for the discretization of (2.2) is an explicit Finite Volume scheme of first order.
The diffusion term leads to small time step sizes, and an implicit scheme would be
preferable. As the RB methodology, however, is based on the availability of localized
operators, it is not directly transferable to implicit discretizations.

We assume the reference domain to be rectangular in order to use a uniform
Cartesian grid. This allows us to use the approach introduced by [2] for discretization
of the anisotropic diffusion tensor GGt in (2.2). Let us remark, however, that a
discretization on an unstructured grid, e.g. proposed in [4], would be compatible with
the further exposition.

The time domain is discretized uniformly into K + 1 time steps of time step
size ∆t := Tmax

K and time instants tk := k∆t for k = 0, . . . ,K. We use a tessellation
T := {ei}Hi=1 of the domain Ω consisting of disjoint, equally sized, rectangular elements
ei, such that Ω̄ =

⋃H
i=1 ēi. On this grid we define elementwise constant functions which

build the high dimensional discrete function space WH := span{χei
| ei ∈ T }. For

every element ei, we introduce the notations N (i, j) for the index of the element’s j-th
neighbour cell and σij respectively nij for the corresponding edges and outer normals,
with j = 0, . . . , 3 indicating right, upper, left and lower neighbourship. For simplicity,
the boundary conditions are handled by using the concept of ghost-cells. If σij is an
interior edge, i.e. σij 6⊂ ∂Ω, we denote the line connecting the two barycenters of the
two cells neighbouring σij by sij . Furthermore, for these interior edges, we define the
end-points by xkij , k = 0, 1. Then, we use N k(i, j) as index sets containing the indices
of the 4 cells adjacent to xkij . With this notation, the explicit Finite Volume scheme

Fig. 2.1: Part of the grid with notations used in this paper, with j := N (i, 2).

produces the discrete solutions UkH(x;µ) =
∑H
i=1 U

k
i (µ)χei(x) ∈ WH , for k = 0, . . . ,K

and µ ∈ P by evaluating the recursion

U0
i (µ) =

1
|ei|

∫
ei

u0(µ), Uk+1
i (µ) = Uki (µ)− ∆t

|ei|

3∑
j=0

gij(UkH(µ)), (2.9)

where gij denote the numerical flux functions. We choose a numerical flux with
upwinding for the convective term and define gij for interior edges by

gij(UkH(µ)) :=|σij |a(µ)
(
GGtR(σij , UkH(µ))

+ vUki (µ) · nij χ{v·nij>0} + vUkj (µ) · nij χ{v·nij<0}
)

+ a(µ)
∫
ei

(∇ · v) Uki (µ),

(2.10)
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where the continuous functions and operators are evaluated at the barycenter of the
edge σij and R denotes the reconstruction operator for the gradient given by

R(σij , UkH(µ)) =
1
|sij |

(Ukj (µ)− Uki (µ))nij

+
1

4|σij |

 ∑
l∈N 0(i,j)

Ukl (µ)−
∑

l∈N 1(i,j)

Ukl (µ)

 tij ,
(2.11)

with tij being a normalized vector orthogonal to nij such that (x1
ij − x0

ij) · tij > 0.
On boundary edges the numerical flux and the gradient reconstruction are defined

analogously with proper management of the Dirichlet and Neumann conditions (cf. [3]
for details).

2.3. Reduced Basis Method. We can write the FV scheme (2.9) in a more
compact form as

U0
H(µ) := P [u0(x;µ)]

UkH(µ) := Uk−1
H (µ) + ∆tL(tk, µ)[Uk−1

H ], k = 1, . . . ,K.
(2.12)

Here, P :W →WH is a projection onto the discretization space and L(t, µ) :WH →
WH is an explicit FV evolution operator. In this section only this more general notation
is used and, therefore, the approach can also be applied to other discretizations and
further parabolic problems fitting into this setting.

2.3.1. Empirical Interpolation of Evolution Operator. In order to con-
struct an RB approximation of the problem (2.12), we need to assume that the
operators can be written in an affinely decomposed form.

Definition 2.2. The Finite Volume scheme (2.12) is affinely decomposed, if the
operators P and L can be rewritten as

P [u0(x;µ)] =
QP∑
q=0

P q(x)σqP (µ)

L(t, µ)[UH ] =
QL∑
q=0

Lq(t)[UH ]σqL(t, µ)[UH ],

(2.13)

where P q and Lq are linear operators that are independent of the parameter µ and
the scalar functions σqP (µ) and σqL(t, µ) are computationally independent of the space
variable x.

Obviously, the evolution operator we described in the last section 2.2 is not of the
desired form. This is why we need to consider a collateral reduced basis (CRB) space
WM that is spanned by basis functions ΞM := {ξm}Mm=1. The CRB basis functions
are nodal functions which are equal to 1 at exactly one point of an interpolation
point set TM := {xm}Mm=1 and vanish on the others, i.e. ξm(xm′) = δm,m′ for all
m,m′ = 1, . . . ,M . With these, we can compute a so-called empirical interpolation
(EI) operator

IM [L(t, µ)[UH ]] :=
M∑
m=1

lm(t, µ)[UH ]ξm for all UH ∈ WH . (2.14)
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Here, the coefficient functions lm(t;µ)[UH ] are point evaluations of the finite volume
operator L(t, µ) in the interpolation points TM . Computationally, these functions are
determined simultaneously by a local finite volume operator evaluation on a subgrid
with M ′�H cells. Due to the locality of the finite volume scheme (2.9), the constant
M ′, which determines the computational complexity, is bounded by M ′ ≤ 9M , because
the fluxes over the edges of a cell require evaluations of UH in the 8 neighbouring
degrees of freedom. Due to construction, the EI operator coincides at the interpolation
points with the evolution operator

IM [L(t, µ)[UH ]](xm) = L(t, µ)[UH ](xm) for all m = 1, . . . ,M. (2.15)

As a result, if we substitute the operator L in (2.12) by its interpolant IM [L], the
Finite Volume scheme complies to the affinely decomposed form (2.13).

The construction of ΞM and TM is done in an extensive search algorithm, where
the basis functions are determined from a training set of snapshots

Ltrain :=
{
L(t, µ)[Uk−1

H (µ)] | k = 1, . . . ,K, µ ∈M
}

with a finite parameter subset M ⊂ P. This algorithm works iteratively and picks
in each step, the worst approximated snapshot from Ltrain and a corresponding
interpolation point. Details of this construction are presented in [6], which is based on
the original empirical interpolation method [1].

2.3.2. Reduced Basis Approximation. The CRB space WM ⊂ WH for the
EI of L is constructed such that it optimally approximates operator evaluations from
the training set Ltrain. Analogously, we construct an RB space WN ⊂ WH such that
the projection error for a training set of discrete solutions

Utrain :=
{
UkH(µ) | k = 0, . . . ,K, µ ∈M

}
becomes reasonably small: We initially choose an orthonormalization of the µ-inde-
pendent functions P q(x) in (2.13) and incrementally add functions from the set Utrain

chosen by a greedy search algorithm. The resulting set after N steps, then gives us
a basis for the RB space WN . The choice of the first vectors for the basis assures
that initial solutions U0

H(µ) are approximated with zero error which simplifies error
analysis.

For details on the construction algorithm and error analysis used here, we again
refer to [6]. A more sophisticated method using adaptive grids is given in [5].

Through substitution of L by its EI, the scheme 2.12 is of affinely decomposed
form and can thus be projected onto WN . We arrive at the following definition, where
we use 〈·, ·〉 to denote the L2(Ω) inner product on WH .

Definition 2.3 (Reduced basis scheme). Let WN ⊂WH be a RB space spanned
by basis functions {ϕn}Nn=1 and WM ⊂WH be the CRB space for the EI of an explicit
discretization operator L(tk, µ). We further denote the interpolation points with
{xm}Mm=1 and the corresponding nodal basis functions with {ξm}Mm=1. Then for all
k = 0, . . . ,K and µ ∈ P the functions UkN (µ) :=

∑N
n=1 a

k
n(µ)ϕn with the coefficient

vectors ak :=
(
ak0(µ), . . . , akN (µ)

)t ⊂ RN are defined as the solution of the reduced
basis scheme

a0(µ) := (〈P [U0(µ)], ϕ1〉 , . . . , 〈P [U0(µ)], ϕN 〉)t

ak+1(µ) := akn(µ) + ∆tBl(µ, tk)[ak(µ)]
(2.16)
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for k = 1, . . . ,K − 1. Here the vector l and the matrix B are defined by

(B)nm := 〈ξm, ϕn〉 , (2.17)

(l(tk, µ))m := IM [L(tk, µ)[UkN (µ)]](xm) (2.18)

for n = 1, . . . , N and m = 1, . . . ,M .
All the parameter-independent parts of this scheme can be precomputed in a

possibly extensive offline phase. For varying parameters, the scheme can afterwards be
computed very efficiently in the online phase as the complexity of these computations
depends only polynomial on the dimensions of the reduced basis spaces N and M .
Furthermore, rigorous a posteriori error estimates for the error ‖UkH(µ)−UkN (µ)‖L2(Ω)

can be computed equally efficiently in an offline/online way. For details, we refer to
[7].

3. Numerical Experiments. The experiments are implemented in MATLAB
and based on our package RBmatlab, that provides FV discretizations, algorithms for
empirical interpolation, RB generation and RB simulations.

We consider a quadratic reference domain for which the upper border can be
transformed to a parabolic segment, cf. Fig. 3.1d, depending on one parameter. The
left and right borders are assigned Dirichlet boundary conditions, depending on
a further parameter. The upper and lower border of the domain are natural no-
flow boundaries. More precisely, we choose our reference domain to be Ω̂ := [0, 1]2
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(a) t = 0.0, µ = (0, 0)
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(b) t = 0.45, µ = (0, 0)
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(c) t = 0.9, µ = (0, 0)
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(d) t = 0.0, µ = (0.4, 0.5)
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(e) t = 0.45, µ = (0.4, 0.5)
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(f) t = 0.9, µ = (0.4, 0.5)

Fig. 3.1: Illustration of the numerical solution for different parameters and times.
Subfigures (a) and (d) have highlighted left and right Dirichlet (green) and upper and
lower Neumann (red) boundaries.
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and the geometry transformation as Φ(x̂;µ) := (x̂1, x̂2 · (−4µ1x̂
2
1 + 4µ1x̂1))t, with

µ = (µ1, µ2) in the parameter domain P := [0, 0.4]× [0, 0.5]. The initial data function
u0(x̂;µ) :=

∑7
i=1 0.2χ{(x̂−bi)2<0.05} is built as a sum of seven indicator functions on

circles with centres bi ∈ R2, i = 1, . . . , 7. Note that u0 is defined on the reference
domain, such that after the geometry transformation the circles turn into ellipses, cf.
Figure 3.1d. Otherwise the required affine decomposition property of the initial data
u0 would a priori not be satisfied. Indeed, with an additional empirical interpolation
step it would be possible to bring the function u0 into the desired affine form, but this
would result in an additional approximation error.

On the left and the right domain boundaries we assign Dirichlet values gD(x, t;µ) :=
µ2χ{x2>0.7}. The computations are run on a 100 × 80 grid with fixed end time
Tmax = 0.9 and the time-interval is divided into K := 300 intervals such that stability
of the evolution scheme is guaranteed for all µ ∈ P.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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(a) Ω̂
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(b) Ω

Fig. 3.2: Illustration of the solution snapshot UkH(µ) with k = 150 and µ = (0.25, 0.4)
on the reference domain (a) and the actual domain (b). In (a) the anisotropic diffusion
on the reference domain is visible.

Figure 3.1 shows solutions for different parameter combinations and times. The
diffusion process in time is visible from left to right on a non-deformed domain for
µ = (0, 0) and a deformed domain for µ = (0.4, 0.5). In both cases we observe the
expected isotropic diffusion on Ω. Figure 3.2 presents a specific solution snapshot
on the reference domain Ω̂ and the deformed domain Ω. We can clearly observe the
anisotropy of the diffusion on the reference domain.

The CRB space WM has M := 50 basis functions that are extracted from the set
of snapshots Ltrain, where the underlying finite subset of the parameter space M⊂ P
consists of 16 uniformly distributed points. The parameters and time indices of the
snapshots which the EI algorithm selects can be seen in Fig. 3.3a. The gray-shades
indicate the order of the selection, i.e. darker points indicate earlier selected snapshots.

We clearly observe that the most important snapshots are selected for the extreme
values of the second parameter, i.e. the Dirichlet parameter. This is understandable
as with the linearity of the equation, every solution UkH(µ) for µ = (µ1, µ2) ∈ P
formally is a convex combination of the solutions UkH((µ1, 0)) and UkH((µ1, 0.5)). The
EI-selection procedure therefore correctly discovers this importance of the extreme
solutions. The first parameter, i.e. the geometry transformation, has a stronger effect
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on the operator than Dirichlet boundary data, especially for low time indices and large
geometry distortions.
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Fig. 3.3: (a) Parameters and time indices of selected snapshots for basis functions of
CRB space. (b) RB error convergence on 100 test samples for growing basis size N at
different CRB dimensions M .

The same set M is used in order to build the RB space WN which is spanned
by N := 25 basis functions. Figure 3.3b illustrates the error convergence for different
reduced approximations. For this purpose, we use a set Mtest ⊂ P of 100 randomly
chosen test parameters. Then we plot the error

max
k=0,...,K

max
µ∈Mtest

∥∥UkH(x;µ)− UkN (x;µ)
∥∥
L2(Ω)

for growing RB dimension N and for different fixed CRB dimensions. For coarse
operator approximations like e.g. M = 23, we observe that the error induced by the
EI dominates and the RB approximation error cannot drop below a certain level.

The main goal of the RB method is to reduce the simulation time. Table 3.1 gives
an overview of the runtime gain for varying dimensions of the reduced spaces. As the
construction of the RB space and collateral RB space with N = 25 and M = 50 took
altogether about 2920 sec. and the time gain per simulation at this configuration is
about 18.5 sec., we get a total time gain if more than 160 different simulations need
to be computed. Note, however, that this “break even point” will get smaller if the
dimensionality of WH is increased.

4. Conclusion. We have shown that RB methods for finite volume schemes [6, 7]
can be used for parametrized geometries. The crucial ingredients are i) a reference
mapping of the equation onto a reference domain, ii) a finite volume scheme with
correct treatment of non-isotropic diffusion tensors by gradient reconstruction, iii)
an empirical interpolation of the resulting finite volume space discretization operator
and iv) a reduced basis approximation for the FV scheme. Experimentally, we have
demonstrated a considerable acceleration of the online simulations.

As expected, the explicit discretization of diffusivities leads to small time-steps,
hence is only applicable for small diffusivities. This can obviously be improved by
extending the RB-method with implicit operator components. We would expect a
considerably larger acceleration in these cases, as the implicit time stepping in WH

will be much more expensive than the explicit steps in the current scheme.
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Dimensions Runtime[s] max error
H = 8000 23.0626 0

N = 1, M = 1 3.7714 0.612030
N = 9, M = 34 4.3052 0.005632
N = 9, M = 50 4.5438 0.005616
N = 17, M = 34 4.3081 0.002640
N = 17, M = 50 4.5474 0.001784
N = 25, M = 34 4.3142 0.004379
N = 25, M = 50 4.5497 0.001340

Table 3.1: Runtime comparisons for reduced and detailed simulations at varying
dimensions of the reduced spaces.

RB approaches with FEM discretization frequently use domain decomposition
and piecewise affine reference mappings. Consistency requirements of the numerical
fluxes make this approach nontrivial for finite volume discretizations. Hence, this
could be an interesting point for further research. Error quantification can be realized
by implementing corresponding a posteriori error estimators [3].

Acknowledgement. Bernard Haasdonk was funded by the German Federal
Ministry of Education and Research under grant number 03SF0310C and by the
Landesstiftung Baden-Württemberg gGmbH.
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